
PostGIS: future developments

What is PostGIS

● GPL PostgreSQL extension for Geographic Objects
● Types
● Operators
● Functions
● Indexes
● Standard interfaces
● Extension API

Current features

✔ OpenGIS “Simple Features for SQL” certified
✔ Spatial analysis and predicates (GEOS/JTS)
✔ Up to 4 dimensions coordinates (Shapefile-like)
✔ 2d spatial indexing (rtree/GiST)
✔ SRS reprojections (PROJ4)
✔ About 200 spatial functions
✔ Lossless Shapefile import / export

current features

OGC types

1. Points

2. Lines

3. Polygons

4. MultiPoints

5. MultiLines

6. MultiPolygons

7. Collections

current features

Spatial analysis

✔ Union
✔ Intersection
✔ Difference
✔ Symmetric difference
✔ Convex Hull
✔ Buffer

current features

Spatial predicates

✔ Equals
✔ Disjoint
✔ Intersects
✔ Touches
✔ Crosses
✔ Within
✔ Contains
✔ Overlaps

current features

Coordinate dimensions
✔ 2D (X, Y)
✔ 2.5D (X, Y, Z)
✔ Measured (X, Y, M)
✔ Measured 2.5D (X, Y, Z, M)

Lossless
Shapefile

import / export

Community

● MapServer
● GeoServer
● UDIG
● Qgis
● Jump
● OpenEV
● GRASS
● OGR

● GeoTypes
● GeoTools
● MezoGIS
● Thuban
● phpPgGis
● PrimaGIS
● OrbisCAD
● ...

Ongoing and future developments

● Long transactions
● Topology
● Networks
● Rasters
● ISO SQL/MM

ongoing development

Long transactions

● Features locking
● Implemented in 1.1.3
● OGC standard (WFS)

long transactions

What for ?

● OGC Web Features Service
● Generic web-based architectures
● Data integrity
● Concurrent access

long transactions

How does it work

● Lock any database row (not only features)
● The lock is bound to an authentication token
● Add auth tokens to your session
● Do your things
● Unlock the row(s)

long transactions

How does it work

● Locks are stored inside the DBMS
● Protection is implemented using triggers
● No middleware involved
● Every application is prevented from altering a

locked row

ongoing development

Topology

● Normalized spatial data
● Drafted since 1.1.0
● ISO standard

(SQL/MM)

topology

Why ?

● Topological integrity
● Reduced storage size
● Spatial analysis

why topology ?

Topological integrity

● Every intersection is a node

why topology ?

Topological integrity

● Every intersection is a node

why topology ?

Topological integrity

● Edges are shared ...

why topology ?

Topological integrity

● ... not separate entities.

why topology ?

Reduced storage size

● Every edge is stored only once

why topology ?

Spatial analysis

● Spatial relationships are part of the model
● Predicates and overlays using standard SQL
● Do they touch ? YES ! (no starvation)

topology

What do we have

● Draft included in PostGIS 1.1.0
● Conceptual schema
● Physical schema (ISO SQL/MM)
● Functions (ISO SQL/MM)

topology

Conceptual model

● Faces, Edges and Nodes

topology

Conceptual model

● Topo-geometries

topology

Conceptual model

● Layers

topology
Conceptual model

topology

Physical model

● PostgreSQL 7.3 or up required
● All routines, types and other management objects

are stored in the "topology" schema
● Topologies are stored in schemas
● TopoGeometry type
● Layers metadata

topology

Metadata tables

● topology.topology
● topology.layer

topology

Topology schema

● <name>.edge
● <name>.face
● <name>.node
● <name>.relation (TopoGeometry comp.)

topology

Functions

● Create/destroy topologies
● Edit topologies
● Validate topologies
● Define layers (simple and hierarchical)
● Define TopoGeometries (simple and hierarchical)
● Cast TopoGeometries to Geometries

topology

Example: loading a topology

SELECT topology.CreateTopology('mytopo');

topology

Example: loading a topology

INSERT INTO mytopo.face(face_id) VALUES(1); -- F1

topology

Example: loading a topology

INSERT INTO mytopo.node VALUES(1, 'POINT(0 0)', NULL); -- N1

INSERT INTO mytopo.node VALUES(2, 'POINT(0 30)', NULL); -- N2

INSERT INTO mytopo.node VALUES(3, 'POINT(30 30)', NULL); -- N3

topology

Example: loading a topology
INSERT INTO mytopo.edge
 VALUES(1, 1, 2, -3, 2, 0, 1, 'LINESTRING(0 0, 0 30)'); -- E1

INSERT INTO mytopo.edge
 VALUES(2, 2, 3, -1, 3, 0, 1, 'LINESTRING(0 30, 30 30)'); -- E2

INSERT INTO mytopo.edge
 VALUES(3, 3, 1, -2, 1, 0, 1, 'LINESTRING(30 30, 0 0)'); -- E3

topology

Example: validating a topology

SELECT * FROM topology.ValidateTopology ('mytopo');

 error | id1 | id2
-------+-----+-----
(0 rows)

topology

Example: defining a TopoGeometry

CREATE TABLE land_parcels (feature_name VARCHAR);

-- Returns TG_LAYER_ID
SELECT AddTopoGeometryColumn('mytopo', 'public',
 'land_parcels', 'feature', 'POLYGON');

INSERT INTO features.land_parcels
 VALUES ('P1', -- Feature name
 topology.CreateTopoGeom(
 'mytopo', -- Topology name
 3, -- Topology geometry type (polygon/multipolygon)
 1, -- TG_LAYER_ID for this topology (from topology.layer)
 '{{1,3}}') -- face_id:1
);

topology

Missing features

● ISO SQL/MM topology editing functions are
incomplete (can still use standard SQL)

● TIGER/Line loader dumper (possible at this
stage)

● Geometry => TopoGeometry
● Interface cleanups

future developments

Network

● Shortest path
● Cartoweb
● ISO standard

(SQL/MM)

network

Why ?

● Communication networks modeling
● Standardized interface
● Common algorithms

network

What would it be ?

● A schema and a set of functions
● Like Topology model
● Nodes, Links (vs. edges), No faces

network

Current status

● Unimplemented :)

future developments

Rasters

● DBMS vs. filesystem
● Imagery or analysis ?
● Standards ?
● Use cases ?

rasters

Why ?

● Unified access
● Relational model (metadata)
● SQL interface
● Transactional integrity
● Raster cells analysis

rasters

Why not ?

● File formats already indexed
● Easier disaster recovery
● Don't use DBMS as filesystems :)
● Rasters on disk and metadata in DBMS
● I/O overhead (blobs?)

rasters

Possible data models

● Blocks (values are blocks)
– existing implementations (ie. GEORASTER)

● Wrapped-blob (values are file handlers)
– reduced I/O overhead

– no need to define yet another file format

● Fully relational (values are single pixels)
– quick & easy

– scalability & performance limits

rasters

What do we have

● The CHIP type (could become a BLOCK type)
● PgCHIP gdal driver
● An implementation of the “fully relational”

model
● A community pushing for it :)

future developments

ISO SQL/MM

● Signatures
● New types
● (Topology)
● (Networks)

ISO SQL/MM

Types

● Instantiable subtypes
● CircularString
● CompoundCurve
● CurvePolygon
● MultiCurve
● Surface
● MultiSurface

That's all, folks !

Questions ?

